
“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Combinatorial Parallel
and Scientific
Computing∗

Ali Pınar† and Bruce Hendrickson‡

1 Introduction
Combinatorial algorithms have long played a pivotal enabling role in many applica-
tions of parallel computing. Graph algorithms in particular arise in load balancing,
scheduling, mapping and many other aspects of the parallelization of irregular appli-
cations. These are still active research areas, mostly due to evolving computational
techniques and rapidly changing computational platforms. But the relationship be-
tween parallel computing and discrete algorithms is much richer than the mere use
of graph algorithms to support the parallelization of traditional scientific computa-
tions. Important, emerging areas of science are fundamentally discrete, and they are
increasingly reliant on the power of parallel computing. Examples include computa-
tional biology, scientific data mining, and network analysis. These applications are
changing the relationship between discrete algorithms and parallel computing. In
addition to their traditional role as enablers of high performance, combinatorial al-
gorithms are now customers for parallel computing. New parallelization techniques
for combinatorial algorithms need to be developed to support these nontraditional
scientific approaches.

This chapter will describe some of the many areas of intersection between

∗Pınar is also supported by the Director, Office of Science, Division of Mathematical, Informa-
tion, and Computational Sciences of the U.S. Department of Energy under contract DE-AC03-
76SF00098. Hendrickson was funded by the Applied Mathematics Research program, U.S. De-
partment of Energy, Office of Science, and works at Sandia National Laboratories, a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department
of Energy under contract DE-AC-94AL85000.

†High Performance Computing Research Department, Lawrence Berkeley National Laboratory,
Berkeley, CA, email: apinar at lbl dot gov.

‡Discrete Algorithms and Math Department, Sandia National Laboratories, Albuquerque, NM,
and Department of Computer Science, University of New Mexico, email: bah at sandia dot gov.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

discrete algorithms and parallel scientific computing. Due to space limitations, this
chapter is not a comprehensive survey, but rather an introduction to a diverse set
of techniques and applications with a particular emphasis on work presented at the
Eleventh SIAM Conference on Parallel Processing for Scientific Computing. Some
topics highly relevant to this chapter (e.g. load balancing) are addressed elsewhere
in this book, and so we will not discuss them here.

2 Sparse Matrix Computations
Solving systems of sparse linear and nonlinear equations lies at the heart of many sci-
entific computing applications including accelerator modeling, astrophysics, nanoscience,
and combustion. Sparse solvers invariably require exploiting the sparsity structure
to achieve any of several goals: preserving sparsity during complete/incomplete
factorizations, optimizing memory performance, improving the effectiveness of pre-
conditioners, and efficient Hessian and Jacobian construction, among others. The
exploitation of sparse structure involves graph algorithms, and is probably the best
known example of the role of discrete math in scientific computing.

2.1 Sparse Direct Solvers

Direct methods for solving sparse linear equations are widely used especially for
solving ill-conditioned systems such as those arising in fusion studies or interior
point methods for optimization. They are also used when high accuracy solutions
are needed as with the inversion operator for the shift-and-invert algorithms for
eigencomputations, solving coarse grid problems as part of a multigrid solver, and
solving subdomains in domain decomposition methods. The sizes of the problems
arising in these applications necessitate parallelization, not only for performance,
but also for memory limitations. Most direct solvers require one processor to hold
the whole matrix for preprocessing steps such as reordering to preserve sparsity
during factorization, column/row permutations to avoid or decrease pivoting dur-
ing numerical factorization, and symbolic factorization, and this requirement to
have one processor store the whole matrix is an important bottleneck to scalability.
Recent studies have addressed parallelization of these less time consuming parts of
sparse direct solvers.

Having large entries on the diagonal at the time of elimination is important
for numerical accuracy during LU factorization. The dynamic approach for this
problem is to move a large entry to the diagonal at each step during factorization
by row and column permutations. However, dynamic pivoting hinders performance
significantly. Alternative is the static approach where large entries are permuted
to the diagonal a priori. Although somewhat less robust numerically, this static
pivoting approach achieves much higher performance. The problem of permuting
large entries to the diagonal to reduce or totally avoid pivoting during factoriza-
tion, can be fruitfully recast as the identification of a heavy, maximum-cardinality
matching in the weighted bipartite graph of the matrix. An example is illustrated
in Fig. 1. In the bipartite graph of a matrix, each row and each column of the
matrix is represented by a vertex. An edge connects a row vertex to a column



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

(
c0 c1 c2 c3 c4

)


.2 .8
.3 .1 .6

.6 .4
.8 .2

.9 .1



(
c1 c3 c4 c2 c0

)


.8 .2

.3 .6 .1
.6 .4
.2 .8

.1 .9



Figure 1. Permuting large entries to the diagonal. Dark edges in the
graph correspond to edges in the matching in the bipartite graph of the matrix on
left. Matrix on right is the permuted matrix with respected to the matching where
columns are reordered as (mate of the 1st row, mate of the 2nd row, . . .).

vertex if the corresponding matrix entry at this row and column is nonzero, and
the weight of the edge is set equal to the absolute value of the matrix entry. A
complete matching between rows and columns identifies a reordering of columns or
rows of the matrix, in which all the diagonal values are nonzero. Heavier weighted
edges in the matching translate to larger values on the diagonal after permutation.
Notice that a maximum weighted matching maximizes the sum of absolute values of
diagonal entries. By assigning the logarithms of absolute values of entries to edges
one can maximize the product of diagonal entries with maximum matching.

While bipartite matching is a well-studied problem in graph theory, designing
parallel algorithms that perform well in practice remains as a challenge. Most
sequential algorithms for bipartite matching rely on augmenting paths, which is
hard to parallelize. Bertsekas’ auction algorithm is symbolically similar to Jacobi
and Gauss-Seidel algorithms for solving linear systems, and thus more amenable
to parallelization. As the name implies Bertsekas’ algorithm resembles an auction,
where the prices of the columns are gradually increased by buyers (rows) that are
not matched. Each row bids on the cheapest column, and the process ends, when
all rows are matched to a column. Riedy and Demmel [25] studied the parallel
implementation of Bertsekas’ auction algorithm. They observed, as in all parallel
search algorithms, speedup anomalies with superlinear speedups and slowdowns.
Overall, they showed that the auction algorithm serves very well as a distributed
memory solver for weighted bipartite matching.

Another important and challenging problem in sparse direct solvers is the de-
velopment of parallel algorithms for sparsity preserving orderings for Cholesky/LU
factorization. The two most widely used serial strategies for sparsity preserving
orderings are instantiations of two of the most common algorithmic paradigms in
computer science. Minimum degree and its many variants are greedy algorithms,
while nested dissection is an example of a divide-and-conquer approach. Nested
dissection is commonly used for parallel orderings since its divide-and-conquer na-
ture has natural parallelism, and subsequent triangular solution operations on the
factored matrix grant better efficiency on parallel systems. Nevertheless, paralleliz-
ing minimum degree variants remain as an intriguing question, although previous
attempts have not been very encouraging [9].

Another component of direct solvers that requires a distributed algorithm is
the symbolic factorization phase [10] for sparse Cholesky/LU factorization. Sym-
bolic factorization is performed to determine the sparsity structure of the factored
matrix. With the sparsity structure known in advance, the numerical operations
can be performed much more quickly. Symbolic factorization takes much less time
than numerical factorization, and is often performed sequentially in one processor.
A distributed memory algorithm however, is critical due to memory limitations.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Grigori et al. have studied this problem and reported promising initial results [10].
A more in depth discussion on Sparse Direct methods can be found in Chap-

ter ?? of this book.

2.2 Decompositions with Colorings

Independent sets and coloring algorithms are also commonly used in sparse matrix
computations. A set of vertices is independent if no edge connects any pair of ver-
tices in the set. A coloring is a union of disjoint independent sets that cover all the
vertices. The utility of an independent set arises from the observation that none of
the vertices in the set depend upon each other, and so operations can be performed
on all of them simultaneously. This insight has been exploited in the parallelization
of adaptive mesh codes, in parallel preconditioning and in other settings. Algebraic
multigrid algorithms use independent sets for coarse grid construction. Partitioning
problems that arise in the efficient computation of sparse Jacobian and Hessian ma-
trices can be modeled using variants of the graph coloring problem. The particular
coloring problem depends on whether the matrix to be computed is symmetric or
nonsymmetric, whether a one-dimensional partition or a two-dimensional partition
is to be used, whether a direct or a substitution based evaluation scheme is to be
employed, and whether all nonzero matrix entries or only a subset need to be com-
puted. Gebremedhin [8] has developed a unified graph theoretic framework to study
the resulting problems, and developed shared memory parallel coloring algorithms
to address several of them.

2.3 Preconditioning

Iterative methods for solving linear systems also lead to graph problems, partic-
ularly for preconditioning. Incomplete factorization preconditioners make use of
many of the same graph ideas employed by sparse direct solvers [13]. Efficient data
structures for representing and exploiting the sparsity structure, and reordering
methods are all relevant here. Domain decomposition preconditioners rely on good
partitions of a global domain into subproblems, and this is commonly addressed
by (weighted) graph or hypergraph partitioning [3]. Algebraic multigrid methods
make use of graph matchings and independent sets in their construction of coarse
grids or smoothers [15]. Support theory techniques for preconditioning often make
use of spanning trees and graph embeddings [2].

3 Utilizing Computational Infrastructure
Utilization of the underlying computational infrastructure commonly requires com-
binatorial techniques. Even for applications where problems are modeled with
techniques of continuous mathematics, effective utilization of the computational
infrastructure requires decomposition of the problem into subproblems and map-
ping them onto processors, scheduling the tasks to satisfy precedence constraints,
designing data structures for maximum uniprocessors performance, and communi-
cation algorithms to exchange information among processors. Solution to all these



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

problems require combinatorial techniques.

3.1 Load Balancing

One area where discrete algorithms have made a major impact in parallel scientific
computing is partitioning for load balance. The challenge of decomposing an un-
structured computation among the processors of a parallel machine can be naturally
expressed as a graph (or hypergraph) partitioning problem. New algorithms and
effective software for partitioning have been key enablers for parallel unstructured
grid computations. Some problems, e.g. particle simulations, are described most
naturally in terms of geometry instead of the language of graphs. A variety of ge-
ometric partitioning algorithms have been devised for such problems. In addition,
space-filling curves and octree methods have been developed to parallelize multipole
methods. Research in partitioning algorithms and models continues to be an active
area, mostly due to evolving computational platforms and algorithms. For instance
with increasing gap between computation and communication speeds, distribution
of the communication work has become an important problem. The next generation
petaflops architectures are expected to have orders of magnitude more processors.
An increased number of processors, along with the increasing gap between processor
and network speeds, will expose some of the limitations of the existing approaches.
Novel decomposition techniques and interprocessor communication algorithms will
be required to cope with these problems. Recent advances in load balancing are
discussed in depth in Chapter ?? of this book.

3.2 Memory Performance

The increasing gap between CPU and memory performances argues for the design
of new algorithms, data structures, and data reorganization methods to improve
locality at memory, cache, and register levels. Combinatorial techniques come to
the fore in designing algorithms that exhibit high performance on the deep memory
hierarchies on current architectures and on the deeper hierarchies expected on the
next generation supercomputers. Cache oblivious algorithms [7], developed in the
last few years, hold the promise of delivering high performance for irregular problems
while being insensitive to sizes of the multiple caches. Another approach for better
cache utilization is cache aware algorithms [16], where the code is tuned to make
the working set fit into the cache (e.g. blocking during dense matrix operations),
or repeated operations are performed for the data already in the cache (e.g. extra
iterations for stationary point methods), since the subsequent iterations come at a
much lower cost when the data is already in the cache.

Performance of sparse matrix computations are often constrained by the mem-
ory performance due to the irregular memory access patterns and extra memory
indirections needed to exploit sparsity. For sparse matrix-vector multiplication, it
is possible to reorder the matrix to improve memory performance. Bandwidth or
envelope reduction algorithms have been used to gather nonzeros of the matrix
around the diagonal for a more regular access pattern, and thus fewer cache misses.
A new more promising method is the blocking techniques that have been used for



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

register reuse, and reducing memory load operations [26, 22, 14]. These techniques
represent the sparse matrix as a union of dense submatrices. This requires either
replacing some structural zeros with numerical zeros so that all dense submatrices
are of uniform size [14], or splitting the matrix into several submatrices so that each
submatrix covers blocks of different sizes [26, 22]. Experiments show that notable
speedups can be achieved through these blocking techniques, reaching close to the
peak processor performances.

3.3 Node Allocation

A recent trend for parallel architectures is computational clusters built of off-the-
shelf components. Typically in such systems, communication is slower, but it is
possible to build very large clusters, due to easy incrementability. With slow com-
munication, along with large numbers of processors, choosing which set of proces-
sors to perform a parallel job becomes a critical task for overall performance both
in terms of the response time of individual tasks and system throughput. The prob-
lem of choosing a subset of processors to perform a parallel job is studied as the
node allocation problem, and the objective is to minimize network contention by
assigning jobs to maximize processor locality. Bender et al. [18] empirically showed
a correlation between the average number of hops that a message has to go through
after node allocation and the runtime of tasks. They also proposed node allocation
heuristics that increase throughput by 30% on average. Their algorithms linearly or-
der the processors of the computational cluster by using space-filling curves. Nodes
are then allocated for a task, to minimize the span of processors in this linear order.
This algorithm requires only one pass over the linearized processor array. To break
ties, best-fit or first-fit strategies were studied, and first-fit performed slightly better
in the experiments. One direction for further work is to lift the linearized processor
array assumption and generalize the node allocation techniques to higher dimensions
where the connectivity of the parallel machine is more explicitly modeled.

4 Parallelizing Irregular Computations
Irregular computations are amongst the most challenging to parallelize. Irregularity
can arise from complex geometries, multiscale spatial or temporal dependencies, or
a host of other causes. As mentioned above, graphs and hypergraphs are often used
to describe complex data dependencies, and graph partitioning methods play a key
role in parallelizing many such computations. However, there are many irregular
applications that cannot be parallelized merely by partitioning, because the data
dependencies are more complex than the graphs can model. Two examples are
discussed below: multipole calculations and radiation transport.

4.1 Multipole Calculations

Perhaps a better definition of an irregular problem is one whose solution cannot be
decomposed into a set of simple, standard, kernel operations. But with this def-
inition, the space of irregular problems depends upon the set of accepted kernels.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

As parallel computing matures, the set of well-understood kernels steadily increases
and problems that had once seemed irregular can now be solved in more straight-
forward manners. An excellent example of this trend can be found in the work of
Hariharan and Aluru [11] on multipole methods for many-body problems.

Multipole methods are used to simulate gravitational or electromagnetic phe-
nomena in which forces extend over long ranges. Thus, each object in a simulation
can effect all others. This is naively an O(n2) calculation, but sophisticated al-
gorithms can reduce the complexity to O(n log n) or even O(n). These multipole
algorithms represent collections of objects at multiple scales, combining the impact
of a group of objects into a compact representation. This representation is sufficient
to compute the effect of all these objects upon far-away objects.

Early attempts to parallelize multipole methods were complex, albeit effec-
tive. Space was partitioned geometrically and adaptively, load balancing was fairly
ad hoc, communication was complex and there were no performance guarantees.
By anyone’s reckoning, this was a challenging, irregular computation. In more re-
cent work, Hariharan and Aluru [11] have proposed a set of core data structures
and communication primitives that enable much simpler parallelization. In this
work, the complexity of early implementations is replaced by a series of calls to
standard parallel kernels like prefix and MPI collective communication operations.
By building an application out of well-understood steps, Hariharan and Aluru are
able to analyze the parallel performance and provide runtime guarantees. With
this perspective, multipole algorithms no longer need be seen as irregular parallel
computations.

4.2 Radiation Transport on Unstructured Grids

Another example of an irregular computation is the simulation of radiation trans-
port on unstructured grids. Radiation effects can be modeled by the discrete or-
dinates form of the Boltzmann transport equation. In this method, the object to
be studied is modeled as a union of polyhedral finite elements, and the radiation
equations are approximated by an angular discretization. The most widely used
method to solve these equations is known as source iteration and relies on “sweeps”
on each discretized angle. A sweep operation visits all elements in the order of the
specified direction. Each face of the element is either “upwind” or “downwind”
depending on the direction of the sweep. Computations at each node requires that
we first know all the incoming flux, which corresponds to the upwind faces, and the
output is the outgoing flux, that corresponds to flux through downwind faces.

As illustrated in Fig. 2, this process can be formally defined using a directed
graph. Each edge is directed from the upwind vertex to the downwind one. The
computations associated with an element can be performed if all the predecessors
of the associated vertex have been completed. Thus, for each angle, the set of
computations are sequenced as a topological sort of the directed graph. A problem
arises, when the topological sort cannot be completed, i.e., the graph has a cycle.
If cycles exist, the numerical calculations need to be modified, typically by using
old information along one of the edges in each cycle, thereby removing the depen-
dency. Decomposing the directed graph into strongly connected components will



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Figure 2. Directed graph for the sweep operation.

yield groups of vertices with circular dependencies. Thus scalable algorithms for
identifying strongly connected components in parallel are essential. Most algorithms
for finding strongly connected components rely on depth-first search of the graph,
which is inherently sequential. Pinar et al. [21] described an O(n lg n) divide-and-
conquer algorithm that relies on reachability searches. McLendon et al. [19] worked
on an efficient parallel implementation of this algorithm and applied it to radiation
transport problems.

The efficient parallelization of a sweep operation is crucial to radiation trans-
port computations. A trivial solution is to assign a set of sweep directions to each
processor, this however requires duplicating the mesh at each processor, which is in-
feasible for large problems. A scalable solution requires distributing the grid among
processors and doing multiple sweeps concurrently. This raises the questions of how
to distribute the mesh among processors and how to schedule operations on grid
elements for performance.

Sweep scheduling is a special case of the precedence-constrained scheduling
problem, which is known to be NP-Complete. For radiation transport, several
heuristic methods have been developed and shown to be effective in practice [20, 24],
but they lack theoretical guarantees. Recently, Kumar et al. [17] described the
first provably good algorithm for sweep scheduling. Their linear time algorithm
gives a schedule of length at most O(log2 n) times that of the optimal schedule.
Their random delay algorithm assigns a random delay to each sweep direction.
Each mesh element is then assigned to a processor uniformly at random. Each
processor participates in the sweeps without violating the precedence constraints,
and applying a random delay to each sweep. Kumar et al. show that this algorithm
will give a schedule of length at most O(log2 n) times the optimal schedule. Later,
they propose an improved heuristic with the same asymptotic bound on the worst
schedule length, but that performs better in practice. Experimental results on
simulated runs on real meshes show that important improvements are achieved by
using the proposed algorithms.

5 Computational Biology
In recent years, biology has experienced a dramatic transformation into a com-
putational and even an information-theoretic discipline. Problems of massive size
abound in newly acquired sequence information of genomes and proteomes. Multi-
ple alignment of the sequences of hundreds of bacterial genomes is a computational
problem that can be attempted only with a new suite of efficient alignment algo-
rithms on parallel computers. Large-scale gene identification, annotation, and clus-
tering expressed sequence tags (EST) are other large-scale computational problems
in genomics. These applications are constructed from a variety of highly sophis-
ticated string algorithms. Currently there are more than 5 million human EST’s
available in databases and this collection continues to grow. These massive data



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

sets necessitate research into parallel and distributed data structures for organizing
the data effectively.

Other aspects of biology are also being transformed by computer science.
Phylogenetics, the reconstruction of historical relationships between species or in-
dividuals, is now intensely computational, involving string and graph algorithms.
The analysis of micro-array experiments, in which many different cell types can
simultaneously be subjected to a range of environments, involves cluster analysis
and techniques from learning theory. Understanding the characteristics of protein
interaction networks and protein-complex networks formed by all the proteins of an
organism is another large computational problem. These networks have the small-
world property: the average distance between two vertices in the network is small
relative to the number of vertices. Semantic networks and models of the world-wide
web are some other examples of such small world networks. Understanding the na-
ture of these networks, many with billions of vertices and trillions of edges, is critical
to extracting information from them or protecting them from attack. A more de-
tailed discussion on computational problems in biology is provided in Chapter ??
of this book.

One fundamental problem in bioinformatics is sequence alignment, which in-
volves identifying similarities among given sequences. Such alignments are used to
figure out what is similar and what is different in the aligned sequences, which might
help identify the genomic bases for some biological processes. One application of se-
quence alignment is finding DNA signatures. A signature is a group of subsequences
in the DNA that is preserved in all strains in a set of pathogens, but unique when
compared to all other organisms. Finding signatures requires multiple sequence
alignments at the whole genome level. While dynamic programming is commonly
used to optimally align small segments, the complexity of these algorithms is the
product of the lengths of the sequences being aligned. The complexity, and the
gap between its mathematical optimality and biological effectiveness make dynamic
programming algorithms undesirable for whole genome level alignments. Hysom
and Baldwin [12] worked on an alternative. They use suffix trees to find long subse-
quences that are common in all sequences. In a suffix tree, each suffix is represented
by a path from the root to a leaf, and its construction takes only linear time and
space. Once the suffix tree is constructed, long common subsequences can be easily
found by looking at internal nodes of the tree. Among these long subsequences
anchors are chosen for the basis of alignment, so that in the final alignment anchors
are matched to each other, and the problem is decomposed to align subsequences
between the anchors. Hysom and Baldwin use this decomposition to parallelize the
alignment process.

6 Information Analysis
Advances in technology have enabled production of massive volumes of data through
observations and simulations in many scientific applications such as biology, high-
energy physics, climate modeling, and astrophysics. In computational high-energy
physics, simulations are continuously run, and notable events are stored in detail.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

The number of events that need to be stored and analyzed is on the order of several
millions per year. This number will go up dramatically in coming years as new
accelerators are completed. In astrophysics, much of the observational data is now
stored electronically, creating a virtual telescope whose data can be accessed and
analyzed by researchers world wide. Genomic and proteomic technologies are now
capable of generating terabytes of data in a single day’s experimentation. A simi-
lar data explosion is impacting fields besides the conventional scientific computing
applications and even the broader societies we live in, and this trend seems likely
to continue.

The storage, retrieval, and analysis of these huge data sets is becoming an
increasingly important problem, that cries out for sophisticated algorithms and
high performance computing. Efficient retrieval of data requires a good indexing
mechanism, however even the indexing structure itself often occupies a huge space
due to the enormous size of the data, which makes the design of compact index-
ing structure a new research field [23]. Moreover the queries on these data sets
are significantly different than those for traditional databases and so require new
algorithms for query processing. For instance, Google’s page ranking algorithm
successfully identifies important web pages among those relevant to specified key-
words [4]. This algorithm is based on eigenvectors of the link graph of the web.
Linear algebra methods are used elsewhere in information processing in latent se-
mantic analysis techniques for information retrieval. In a similar cross-disciplinary
vein, understanding the output of large scale scientific simulations is increasingly
demanding tools from learning theory and sophisticated visualization algorithms.

Graphs provide a nice language to represent the relationships arising in various
fields such as the Web, gene regulatory networks, or people interaction networks.
Many such networks have power law degree distributions. That is, the number
of nodes with d neighbors is proportional to 1/dβ for some constant β > 0. This
constant has been observed to be between 2 and 3 for a wide assortment of networks.
One consequence is that these networks have small diameters, O(log log n), where
n is the number of nodes. A deeper understanding of the properties of complex
networks, and algorithms that exploit these properties, will have a significant impact
upon our ability to extract useful information from many different kinds of data.

The analysis of very large networks requires parallel computing. To parallelize
the analysis, the network must first be divided among the processors. Chow et al.
have studied this partitioning problem [5]. Partitioning a network into loosely-
coupled components of similar sizes is important for parallel query processing, since
loosely-coupled components enable localizing most of the computation to a proces-
sor with limited communication between processors. Although existing partitioning
techniques are sufficient for many scientific computing problems, the data depen-
dencies in complex networks are much less structured, and so new parallelization
techniques are needed.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Figure 3. Branch-and-bound algorithm

7 Solving Combinatorial Problems
The increasing use of combinatorial techniques in parallel scientific computing will
require the development of sophisticated software tools and libraries. These libraries
will need to be built around recurring abstractions and algorithmic kernels. One
important abstraction for discrete problems is that of integer programming. A
wide assortment of combinatorial optimization problems can be posed as integer
programs. Another foundational abstraction is that of graph algorithms. For both of
these general approaches, good parallel libraries and tools will need to be developed.

7.1 Integer Programming

Many of the combinatorial optimization problems that arise in scientific computing
are NP-hard, and thus it is unreasonable to expect an optimal solution to be found
quickly. While heuristics are a viable alternative for applications where fast solvers
are needed and sub-optimal solutions are sufficient, for many other applications
a provably optimal or near-optimal solution is needed. Examples of such needs
arise in vehicle routing, resource deployment, sensor placement, protein structure
prediction and comparison, robot design and vulnerability analysis. Large instances
of such problems can only be solved with high-performance parallel computers.

Mixed-integer linear programming (MILP) involves optimization of a linear
function subject to linear and integrality constraints, and is typically solved in
practice by intelligent search based on branch-and-bound and branch-and-cut (con-
straint generation). Branch and Bound (B&B) recursively sub-divides the space
of feasible solutions by assigning candidate values to integer variables, i.e., xi =
0, 1, 2, . . .. Each branch represents the subdomain of all solutions where a variable
has the assigned value, e.g., xi = 0. These steps correspond to the “branching” com-
ponent of a B&B algorithm. The other important component is bounding, which
helps avoid exploring an exponential number of subdomains. For each subdomain a
lower bound on the minimum (optimal) value of any feasible solution is computed,
and if this lower bound is higher than the value of the best candidate solution, this
subdomain is discarded. Otherwise, B&B recursively partitions this subdomain and
continues the search in these smaller subdomains. Optimal solutions to subregions
are candidates for the overall optimal. The search proceeds until all nodes have
been solved or pruned, or until some specified threshold is met between the best
solution found and the lower bounds on all unsolved subproblems.

Efficiency of a B&B algorithm relies on availability of a feasible solution that
gives a tight upper bound on the optimal solution value, and a mechanism to find
tight lower bounds on problem subdomains, to fathom subdomains early, without
repeated decompositions. Since B&B can produce an exponential number of sub-
problems in the worst case, general and problem-specific lower and upper bound
techniques are critical to keep the number of subproblems manageable in practice.
Heuristics are commonly used for upper bounds. What makes MILPs attractive for



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Figure 4. Cutting planes close the gap between IP and LP feasible regions.

modeling combinatorial models is that a lower bound on a MILP can be computed
by dropping the integrality constraints and solving the easier linear-programming
relaxation. Linear programming (LP) problems can be efficiently solved with to-
day’s technology. However, tighter lower bounds necessitate closing the gap between
LP polytope and the MILP polytope, that is narrowing the LP feasible space to
cover only a little more than the integer feasible space. This can be achieved by
dynamic constraint (a.k.a. cutting plane) generation, either for the whole problem
or for the subdomains.

Branch-and-bound algorithms can effectively utilize large numbers of proces-
sors in a parallel processing environment. However, the ramp-up phase remains as
a challenge. Eckstein et al. [6] designed and developed a Parallel Integer and Com-
binatorial Optimizer (PICO) for massively parallel computing platforms. They
observed that the presplitting technique that starts with branching to decompose
the problem into one subdomain per processor often leads to poor performance,
because it expands many problems that would be fathomed in a serial solution.
Alternatively, they studied parallelizing the ramp-up phase, where many processors
work in parallel on a single subdomain. This requires parallelization of preprocess-
ing, LP solvers, cutting plane generation, and gradient computations to help with
choosing which subdomain to decompose. A more detailed discussion on massively
parallel integer programming solvers can be found in Chapter ?? of this book.

7.2 Libraries for Graph Algorithms

The importance of graph algorithms is growing due to the broad applicability of
graph abstractions. This is particularly true in bioinformatics and scientific data
mining. Scientific problems often generate enormous graphs that can only be an-
alyzed by parallel computation. However, parallelization of graph algorithms is
generally very hard and is an extremely challenging research field. Bader and col-
leagues have studied the parallelization of a number of fundamental graph opera-
tions, such as spanning trees and ear decompositions on SMPs for small numbers
of processors. In Bader’s spanning tree implementation [1], each processor starts
growing trees from different vertices by repeatedly adding a vertex adjacent to a
vertex in the current tree. Race conditions are handled implicitly by the SMP,
and load balancing is achieved by work stealing between processors. Bader and
Cong [1] also studied construction of a minimum spanning tree (MST), where the
objective is to construct a spanning tree with minimum edge-weight sum. They
used Boruvka’s MST algorithm, which labels each edge with the smallest weight
to join the MST, and at each iteration adds the edge with minimum cost to the
tree. Bader and Cong experimented with different data structures for Boruvka’s
algorithm, and with a new algorithm where each processor runs Prim’s algorithm
until it is maximal, and then switched to Boruvka’s algorithm. Their approach was
the first to obtain speedup on parallel MST algorithms.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

This and related work needs to be bundled into easy-to-use toolkits to facilitate
the greater use of graph algorithms in parallel applications.

8 Conclusions
In this chapter, we have introduced a few of the areas in which combinatorial al-
gorithms play a crucial role in scientific and parallel computing. Although some of
these examples reflect decades of work, the role of discrete algorithms in scientific
computing has often been overlooked. One reason for this is that the applications
of combinatorial algorithms are scattered across the wide landscape of scientific
computing, and so a broader sense of community has been hard to establish. This
challenge is being addressed by the emergence of combinatorial scientific computing
as a recognized subdiscipline.

It is worth noting that some of the most rapidly growing areas within scientific
computing (e.g. computational biology, information analysis, etc.) are particularly
rich in combinatorial problems. Thus, we expect combinatorial ideas to play an
ever-growing role in high performance computing in the years to come.

Acknowledgements
We are grateful to Srinivas Aluru, David Bader, Chuck Baldwin, Michael Bender,
Edmond Chow, Jim Demmel, Tina Eliassi-Rad, Assefaw Gebremedhin, Keith Hen-
derson, David Hysom, Anil Kumar, Fredrik Manne, Alex Pothen, Madhav Marathe,
and Jason Riedy for their contributions to the Eleventh SIAM Conference on Par-
allel Processing for Scientific Computing.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

Bibliography

[1] D. A. Bader and G. Cong, A fast, parallel spanning tree algorithm for sym-
metric multiprocessors (SMPs), in Proc. Int’l Parallel and Distributed Process-
ing Symp. (IPDPS 2004), Santa Fe, NM, Apr. 2004.

[2] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo,
Support–graph preconditioners, SIAM J. Matrix Anal. Appl. To appear.

[3] M. K. Bhardwaj and D. M. Day, Modifications to graph partitioning tools
for use with FETI methods, in Proc. 14th Intnl. Conf. Domain Decomp. Meth-
ods, 2003.

[4] S. Brin, L. Page, R. Motwani, and T. Winograd, The PageRank citation
ranking: Bringing order to the web, Tech. Rep. 1999–0120, Computer Science
Department, Stanford University, 1999.

[5] E. Chow, T. Eliassi-Rad, K. Henderson, B. Hendrickson, A. Pinar,
and A. Pothen, Graph partitioning for complex networks. Presentation at
SIAM Conf. on Parallel Processing and Scientific Computing, San Francisco,
February 2004.

[6] J. Eckstein, W. Hart, and C. Phillips, Pico: An object-oriented frame-
work for parallel branch-and-bound, inherently parallel algorithms in feasibility
and optimization and their applications, Elsevier Scientific Series on Studies in
Computational Mathematics, (2001), pp. 219–265.

[7] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, Cache-
oblivious algorithms, in Proc. 40th IEEE Symp. on Foundations of Computer
Science (FOCS 99), 1999, pp. 285–297.

[8] A. H. Gebremedhin, Practical Parallel Algorithms for Graph Coloring Prob-
lems in Numerical Optimization, PhD thesis, Department of Informatics, Uni-
versity of Bergen, 2003.

[9] J. Gilbert. Personal communication, February 2004.

[10] L. Grigori, X. S. Li, and Y. Wang, Performance evaluation of the re-
cent developments in parallel superlu. Presentation at SIAM Conf. on Parallel
Processing and Scientific Computing, San Francisco, February 2004.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

[11] B. Hariharan and S. Aluru, Efficient parallel algorithms and software for
compressed octrees with application to hierarchical methods, Parallel Comput-
ing. to appear.

[12] D. Hysom and C. Baldwin, Parallel algorithms and experimental results for
multiple genome alignment of viruses and bacteria. Presentation at SIAM Conf.
on Parallel Processing and Scientific Computing, San Francisco, February 2004.

[13] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete fac-
torization preconditioning, SIAM J. Sci. Comput., 22 (2001), pp. 2194–2215.

[14] E.-J. Im, K. Yelick, and R. Vuduc, Optimization framework for sparse
matrix kernels, International Journal of High Performance Computing Appli-
cations, 18 (2004), pp. 135–158.

[15] H. Kim, J. Xu, and L. Zikatanov, A multigrid method base on graph match-
ing for convection diffusion equations, Numerical Lin. Alg. Appl., 10 (2002),
pp. 181–195.

[16] M. Kowarschik, U. Rude, C. Weiss, and W. Karl, Cache-aware multi-
grid methods for solving poisson’s equation in two dimensions, Computing, 64
(2000), pp. 381–399.

[17] V. A. Kumar, M. Marathe, S. Parthasarathy, A. Srinivasan, and
S. Zust, Provable parallel algorithms for radiation transport on unstructured
meshes, Tech. Rep. LA-UR-04-2811, Los Alamos National Laboratory, 2004.

[18] V. Leung, E. Arkin, M. A. Bender, D. Bunde, J. Johnston, A. Lal,
J. Mitchell, C. Phillips, and S. Seiden, Processor allocation on cplant:
Achieving general processor locality using one-dimensional allocation strategies,
in Proceedings of the 4th IEEE International Conference on Cluster Computing
(CLUSTER), 2002, pp. 296–304.

[19] W. McLendon III, B. Hendrickson, S. Plimpton, and L. Rauchw-
erger, Finding strongly connected components in distributed graphs, J. Paral-
lel Distrib. Comput. Submitted for publication. Earlier version in Proc. 10th
SIAM Conf. Parallel Processing for Sci. Comput.

[20] S. D. Pautz, An algorithm for parallel Sn sweeps on unstructured meshes,
Nucl. Sci. Eng., 140 (2002), pp. 111–136.

[21] A. Pınar, L. K. Fleischer, and B. Hendrickson, A divide-and-conquer
algorithm to find strongly connected components, Tech. Rep. LBNL-51867,
Lawrence Berkeley National Laboratory, 2004.

[22] A. Pınar and M. Heath, Improving performance of sparse matrix vector
multiplication, in Proc. IEEE/ACM Conf. on Supercomputing 1999, Portland,
OR, 1999.



“csc”
2005/11/18
pagei

i
i

i

i
i

i
i

[23] A. Pinar, T. Tao, and H. Ferhatosmanoglu, Compressing bitmap in-
dices by data reorganization, in Proc. 21st International Conference on Data
Engineering (ICDE 2005), 2005.

[24] S. Plimpton, B. Hendrickson, S. Burns, W. McLendon III, and
L. Rauchwerger, Parallel algorithms for Sn transport on unstructured grids,
Nucl. Sci. Eng. To Appear. Earlier version in Proc. SC’00.

[25] J. Riedy and J. Demmel, Parallel weighted bipartite matching. Presentation
at SIAM Conf. on Parallel Processing and Scientific Computing, San Francisco,
February 2004.

[26] S. Toledo, Improving the memory-system performance of sparse matrix vector
multiplication, IBM Journal of Research and Development, 41 (1997).


